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In this paper, an approach is suggested to solve the multilevel generalized assignment problem with 0-1 integer 
interval number programming. The  multilevel  generalized  assignment  problem  (MGAP)  differs  from  the  
classical  GAP  in  that  agents  can  perform  tasks  at  more  than  one  efficiency level. The large number of 
variables in the related 0–1 integer program makes it hard to find optimal solutions to these problems, even 
when using powerful commercial optimization packages. In the real world, however, the parameters are seldom 
known exactly and have to be estimated. Interval programming is one of the tools to tackle uncertainty in 
mathematical programming models. In the multilevel generalized assignment problem (MGAP) agents can 
perform tasks at more than one efficiency level. A profit is associated with each assignment and the objective of 
the problem is profit maximization. A parametric study is carried out for the problem of concern. 
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INTRODUCTION
 
MGAP is concerned with assigning n tasks to m agents 
with a maximum of l efficiency levels. Each task j must be 
assigned to exactly one agent i at a level k. The resource 
of each agent i has an upper limit of bi, which must not be 
exceeded. More than one task may be assigned to one 
agent.Generally, the data of real-world problems are 
imprecise or uncertain. Then, the input data can be only 
estimated as with some kind of uncertainty, this 
uncertainty may be represented by an interval number. 
For MGAP, we apply interval numbers for the resource 
used if task j is assigned to agent i. MGAP was first 
described by Glover et al., (1979). The same problem 
was addressed later by Laguna et al, (1995), who tackled 
the problem with a tabu search procedure. In traditional 
mathematical programming, the coefficients of the 
problems are always treated as deterministic values. 
However uncertainty always exists in practical 
engineering problems. For uncertain optimization 
problems, fuzzy and stochastic approaches are 
commonly used to describe the imprecise 
characteristics.The studies of random instances of 
assignment problems date back to as early as Donath, 
(1969). The probabilistic analysis of assignment problems 
are covered only briefly as a number of comprehensive 
surveys   on   solution   methods   for   various  classes of  

 
assignment problems (Pavlo and Panos, 2009). This 
probabilistic analysis of assignment problems are 
available in the literature (see Burkard and Cela, 1999; 
Burkard 2002; Anstreicher, 2003 and Loiola et al., 2007). 
Linzhong et al, (2006, 2012) introduced a fuzzy approach 
for the quadratic assignment problem. Deng et al., (2009) 
developed a fuzzy multi-criteria decision making 
approach for solving a bi-objective personnel assignment 
problem. Woodcock (Woodcock and Wilson, 2010; Zhang 
et al., 1999) introduced a hybrid tabu search branch & 
bound approach to solving the generalized assignment 
problem.The rest of this paper is organized as follows. 
The MGAP with 0-1 integer interval number programming 
is described in Section 2. Section 3 presents an 
optimization approach to solve the MGAP which is 
described in Section2. A parametric study is carried out 
for the problem of concern in Section 4. A numerical 
example is provided in Section 5 to clarify the proposed 
approach. Finally Section 6 contains the conclusions.  
 
 
Statement of the problem 
 
Now, we define the MGAP by using 0-1 integer interval 
number programming as follows:  
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In the above formulation, ,L R

ijk ijk
a a    is an interval 

number represent the resource used if task j is assigned 

to agent i at the kth level. 
ib  is the resource available 

from agent i. The superscripts L and R denote lower and 

upper bounds of an interval number. 
ijkp  is the benefit of 

assigning task j to agent i at the kth level. The binary 

variable 
ijkx   is defined to be 1 if task i is assigning to 

agent j at the kth level. The objective function is given by 
(1). Constraint (2) ensures that each task is completely 
assigned to some agent at some level. Constraint (3) 
ensures that the total resources required from an agent 
do not exceed capacity. Without loss of generality, it will 

be assumed that 0,ijka ≥ that 0 0,ijk ijka x= ⇒ =  and 

that ,  ,  ,  ijk ia b i M j N k L< ∈ ∈ ∈  (Alan and John, 

2002). 
 
 

The optimization approach 
 

 Based on the proposed approach of Jiang et al, (2008) 
for treating interval number, we well treat the uncertainty 
in the left hand side of constraints (3). 
 
 

Treatment of the uncertain inequality constraints 
  
The possibility degree of interval number represents is a 
certain degree that one interval number is larger or 
smaller than another [16]. The set of constraints (3) can 

be written as 
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As in stochastic programming, this inequality satisfied 
with a possibility degree and formulate a deterministic 
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where: ( ) ,L R

i ijk ijk ijk i
g x a a x b = − +   

( ), ( )
L R

i iE g x g x =    is the interval of the constraint 

function at x and its bounds can be obtained through the 
following two deterministic equations: 

( , ) min ( , ),    ( , ) max ( , )
L R

i i i i
a a

g x a g x a g x a g x a
∈Γ ∈Γ

= = . 

 Where Γ  is an uncertain vector and its components are 

all interval numbers. 
E b iP λ≥ ≥ is the possibility degree of 

the ith constraint. 0 1iλ≤ ≤  is a predetermined 

possibility degree level.  
 
 
The deterministic form of MGAP 
 
Through the above treatments for the MGAP which is 
described in the form (1) – (4), it can be transformed into 
the following deterministic form:Max 

1 1 1
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[0,1]iλ ∈         i = 1, 2, …, m              (9) 

 
 
Parametric study for the problem (5) – (9) 
 

 Let 
iλ , i = 1,2,…,m are assumed to be parameters 

rather than constants. The decision space of the problem 
(5) – (9) can be defined as follows: 

{ }( ) {0,1}, 1, 2,..., ,  1, 2, ..., ,  1, 2, ..., satisfies set of constraints (6) (9)ijkX x i m j n k lλ = ∈ = = = −

In what follows, we give the definitions of some basic 
notions for problem (5) – (9).  
 
 
The set of feasible parameters  
       
The set of feasible parameters of problem (5) - (9) which 
is denoted by U, is defined by: 

{ }*
( )

m
U R Xλ λ φ= ∈ ≠ (Osman, 1977) 

 
 
The solvability set  
 
The solvability set of problem (5) - (9) which is denoted  
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by V, is defined by: 

{ }*
problem (5) - (9) has optimal solutionV Uλ= ∈  

 
 
The stability set of the first kind 
  
The stability set of the first kind of problem (5) – (9) that is 
denoted by S(x

*
) is defined by 

{ }* * *
( )  is optimal solution of problem (5) - (9)S x V xλ= ∈

. 
 
Determination of the stability set of the first kind S(x

*
) 

 
Going back to problem (5) – (9), the Kuhn-Tucker 
necessary conditions corresponding to this problem will 
take the following form 
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where , ,  and j ijk ijk iµ ρ σ β  are called Lagrange 

multipliers. All the relation of system (10) are evaluated at 

the optimal solution 
*.x  According to whether any of the 

Lagrange multipliers is zero or negative, then the stability  

 
 
 
set of the first kind can be determined. Also by treating 
the relations of system (10), we can express the set of 
feasible parameters and the solvability set. 
 
 
 Numerical example 
  
Consider the instance of MGAP with 0-1 integer interval 
number programming given by m = 3, n = 8 and l = 2 
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Let λ1 = 0.2, λ2 = 0.4, λ3 = 0.5. The deterministic MGAP 
with 0-1 integer interval number programming can be 
written in the following form: 
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Then the above problem can be solved by using any 
package of ILP and its optimal solution is found: 

* * * * * * * *

171 182 231 251 262 311 321 342 1x x x x x x x x= = = = = = = =  

and all other variables = 0. The objective function z = 283. 
By solving the system (10) at the above optimal 
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 Conclusions 
  
An approach based on 0-1 integer interval number 
programming have been developed for MGAP. The 
proposed approach gave a better solution than stated in 
reference (Alan and John, 2002) especially for the 
objective function value. A parametric study has been 
carried out for the same problem. A numerical example is 
given to clarify the proposed approach. However, An 
exact approach is needed for solving MGAP in case of 
interval numbers are  
found in both of objective function and both sides of 
constraints. 
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