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A quantitative structure activity-relationship (QSAR) biodegradability model was developed to predict removal 
capacity of volatile organic compounds (VOCs) in a compost biofilter. Experimental data for o-Xylene, 1,3,5-
Trimethylbenzene and 1,2,4-Trimethylbenzene was used to develop the model. Biodegradability rate was 
correlated with three molecular and five quantum mechanical derived descriptor variables. Regression results 
showed very strong significance between biodegradability of compounds and their molecular weight, Mw (r

2 
= 

0.995), log octanol-water partition coefficient, pKow (r
2 

=0.880), highest occupied molecular orbital energy, Ehomo 

(r
2 

= 0.989), lowest unoccupied molecular orbital energy, Elumo (r
2 

= 1.000) and energy gap, ∆∆∆∆E (r
2 

= 0.987). Model 

significance with excited state energy, Ees (r
2 

= 0.678) and ground state dipole moments,µµµµ (r
2 

= 0.649) was 
strong. Log Henry’s Constant, H, had weak significance of r

2 
= 0.461. The descriptors were screened and a 

complete biodegradability model developed using molecular weight and logarithm octanol-water partition 
coefficient. The model was calibrated using toluene, ethylbenzene, benzenepropyl-, decane and undecane 
VOCs and tested. Results showed high prediction of xylene and trimethylbenzene isomers, toluene, 
ethylbenzene, benzenepropyl-, decane and undecane biodegradability in the biofilter. 
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INTRODUCTION 
 
Air pollution is a global concern. Characteristics of air 
pollution depend on the source of waste gas emissions, 
and the type and concentration of existing contaminants 
in the gas stream. Volatile organic compounds (VOCs) 
found    in    waste    gases   contribute   to   air   pollution  
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(Leahy et al., 2004; Otten et al., 2004; Ondiaka, 2011). 
Biofiltration is   a   biological   air  pollution  control   
technology   for treatment of organic and inorganic 
substances found in waste gases that are harmful to 
human and environmental health (Leson and Winer, 
1991).Several researchers (Ottengraf, 1986; 
Shareefdeen, et.al., 1993; Shareefdeen and Baltzis, 
1994; Hodge and Devinny, 1995; Deshusses et al., 
1995a, b; Morgenroth et al., 1995; Cherry and 
Thompson, 1997; Zarook et al., 1997) developed models 
to predict biodegradability of organic compounds in 
biofilters. The models considered steady-state dynamic 
systems,      which     addressed     specific    applications  
with     definite     prediction     and      their     applicability  
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was either uncertain or possible but difficult due to 
modeling parameters selected (Devinny et al., 1999). 
Continuous pollutant flows in dynamic modeling limits 
their accuracy in predicting actual systems where 
periodic and transient conditions are experienced. 
Periodic models developed using linear driving force 
(LDF) show that pollutant adsorption and biodegradation 
kinetics described transient behavior in biofilters (Chmiel 
et al., 2005), and biodegradability of VOCs decreased 
with increased VOCs concentrations, bed heights and 
gas velocity (Babu and Raghuvanshi, 2006). 

Quantitative structure activity-relationship (QSAR) 
modeling is a developing technique used by few 
researchers (Choi et al., 1996; Devinny et al., 1997; 
Johnson and Deshussess, 1997 and Govind et al., 1997; 
Deshusses and Johnson, 2000 and Aizpuru et al., 2002) 
to predict pollutant removal in biofilters. The QSAR-based 
models showed strong prediction by correlating removal 
rates and selected multiple physical and chemical 
descriptors of organic compounds existing in waste gas 
streams. Limitations of biofilter design using QSAR-
based models has been the inability to predict elimination 
capacity of individual compounds and compounds found 
in dissimilar mixtures (Aizpuru et al., 2002). 

This study focused on QSAR-based biodegradability 
modeling of selected VOCs in petroleum off-gases under 
unsteady waste gas flow and influent concentrations of 
pollutants. Most QSAR-based models consider steady 
state operations. Normal industrial biofilter set-ups would 
give unique trends in the removal of pollutants because 
of exceptional processes, emission types and varying 
concentrations of pollutants. The model compounds were 
representative of typical industrial emissions. 
 
 
MATERIALS AND METHODS 
 
Selection and Characterization Of Significant 
Descriptors For Qsar Modeling 
 
Pollution management requires prior in depth 
understanding of the type, distribution and quantification 
of existing contaminants and all interacting factors that 
affect their fate, transport and biodegradation (US EPA, 
2006). Organic compounds exhibit different 
characteristics that affect their biodegradation in 
bioreactors. Molecular topology descriptors (Randić, 
1975; Kier and Hall, 1976; Kier and Hall, 1986) based on 

chemical structure and numerical connectivity indices (χ)
 

have been used to assess toxicity and biodegradation of 
organic compounds in the environment (Niemi et al., 
1987). Quantum mechanical calculations that use 
molecular orbital and quantum-chemical descriptors 
(Csizmadia, 1976) are closely related to oxidation- 
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reduction processes and are used to assess treatment of 
organic pollutants (Tang, 2003). Molecular weight and 
partition coefficients, including Henry’s constant and 
octanol-water partition coefficient have been used as 
descriptor variables to model biofiltration processes 
(Aizpuru et al., 2002; Johnson and Deshusses, 1997). 
Molecular weight has steric influence on biodegradability 
of pollutants (Pitter and Chuddoba, 1990). Henry’s 
constant and octanol-water partition coefficient are gas to 
aqueous phase and liquid to solid phase transfer 
descriptors (LaGrega et al., 2001). 

The choice of significant descriptors in quantitative 
structure-activity relationship modeling of biofiltration 
processes is a very important step. To evaluate 
biodegradation of organic compounds during biofiltartion, 
molecular weight (Mw), Henry’s Law constant (H), log 
octanol-water partition coefficient (pKow), and quantum 
mechanical derived descriptors including highest 
occupied molecular energy (Ehomo), lowest unoccupied 

molecular energy (Elumo), energy Gap (∆E = Elumo - Ehomo), 
singlet electronic excited state (Ees) and ground state 

dipole moment (µ)
 
were selected as significant variables 

for modeling. Model compounds selected were o-Xylene, 
1,3,5-Trimethylbenzene and 1,2,4-Trimethylbenzene. 
Henry’s Law constant values at 25

o
C were interpolated to 

a reference temperature of the soil at 20
o
C. 

Thermodynamic properties of o-Xylene, 1,3,5-
Trimethylbenzene and 1,2,4-Trimethylbenzene were 
used to calculate dimensionless H values using Clausius-
Clapeyron relationship (Lide, 1994) given in Equation 1 
and expanded in Equation 2. The Clausius-Clapeyron 
relationship is a correction procedure used to predict 
actual volatilization of organic compounds from soils at 
given soil temperatures. 
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Where TsH
= Henry’s Law constant at average soil 

temperature (unit less); Tsh∆
= enthalpy of vapourization  
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Table 1. Physical and chemical properties of o-Xylene and trimethylbenzene isomers. 
 

VOC Mw
 pKow

 
pH

 
Ehomo

 
Elumo

 
Ees

 
∆∆∆∆E µµµµ

 

o-Xylene 
 

106.17
a
 3.12

c
 5.18E-3

d
 

1.59E-1
e
 

-9.421
f
 4.426

f
 6.393

f
 9.847

f
 0.463

f
 

1,3,5-TMB 120.19
b
 3.42

c
 8.77E-3

d
 

2.62E-1
e
 

-9.280
f
 0.437

f
 6.236

f
 9.717

f
 0.040

f
 

1,2,4-TMB 
 

120.19
b
 3.63

c
 6.16E-3

d
 

1.84E-1
e
 

-9.286
f
 0.438

f
 6.316

f
 9.724

f
 0.267

f
 

 
a 

O’Neil, (2006); 
b 

Budavari et al., (1989); 
b 

US EPA, (1987a); 
c 

Hansch et al., (1995); 
d
 Values of Henry’s Law Constant @ 25

o
C: 

National Institute of Standards and Technology (NIST) (2005); 
e 

Interpolated dimensionless values of Henry’s Law Constant @ 
20

o
C; 

f 
Computed quantum mechanical values. 

 
 

at average soil temperature (cal mol-1); sT
= average soil 

temperature (oK); r
T

= Henry’s Law constant reference 

temperature (oK); r
H

= Henry’s Law constant at the 

reference temperature (oK); cR
= gas constant (1.9872 

cal mol-1oK-1); R = gas constant (8.205 x 10-5 atm-m3 

mol-1oK-1); Tbh∆
= enthalpy of vaporization at normal 

boiling temperature (cal mol-1); cT
= critical temperature 

(oK); bT
= normal boiling temperature (oK) and n = 

exponent (unit less). 
Quantum mechanical derived descriptors were computed 
using approximate Hamiltonian semi-empirical parametric 
method 3 (PM3) in ArgusLab 4.0.1 Software (Mark A. 
Thompson, Planaria Software LLC, Seattle, WA, USA, 
http://www.arguslab.com). A summary of the selected 
physical and chemical properties of o-Xylene, 1,3,5-
Trimethylbenzene and 1,2,4-Trimethylbenzene used as 
descriptors are given in Table 1. 
 
 
Evaluation Of Degradation Rates Of Xylene And 
Trimethylbenzene Isomers 
 
Empirical data used was obtained from a laboratory 
biofiltration treatment study for the removal of xylene and 
trimethylbenzene (XTMB) volatile organic compounds 
(VOCs) in a mixture of petroleum hydrocarbons 
(Ondiaka, 2011). In the study that was conducted at the 
International Centre of Insect Physiology and Ecology 
(ICIPE) in Nairobi, Kenya, a compost bofilter with 
heterogeneous microorganism population was used to 
treat petroleum VOCs (Ondiaka, 2011). Natural logarithm 
and inverse of influent concentrations of o-Xylene, 1,3,5-
Trimethylbenzene and 1,2,4-Trimethylbenzene were 
plotted against cumulative time to determine the order of 
reaction and reaction rate constants, k (LaGrega et al., 

2001). Equation 4 (Ottengraf and Van Den Oever, 1983) 
and Equation 5 (Ottengraf, 1986) were used to reveal 
zero order and first order reactions respectively. Influent 
concentrations of XTMB at retention times of 0 to 156-
hours of biofilter operation were used in the computation. 

 

tkC ∆−=∆          

 

tkCC ∆−=∆  

 

Where t = retention time; C = concentration of 

contaminants; k = order reaction rate constant; and 

tC ∆∆ = rate of change of concentration in the biofilter. 

 
 
1.3. Qsar-Based Biodegradability Model Development 
 
The QSAR-based model was developed stepwise. Each 
descriptor was correlated with log biodegradation rate 
(logk) and treated as a best-fit sub-model. Log-H was 
used (Johnson and Deshusses, 1997). A combination of 
the descriptors was used to evaluate the significance of 
sub-models. A theoretical mathematical relationship 
(Equation 5) was formulated to describe the complete 
model. 
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Where β  = model constants to be determined using 

experimental data; D = descriptor variables used in 
model development 
 
 
Model Analysis 
 
Best-fit descriptor parameters were used to calibrate the  
 

(3) 

(4) 

(5) 
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model. Five compounds including toluene, ethylbenzene, 
benzenepropyl, decane and undecane constituted in the 
petroleum off-gases but not used in model development 
were used in calibration. The parameters of m-,p-Xylene, 
o-Xylene, 1,3,5-Trimethylbenzene, 1,2,4-
Trimethylbenzene, toluene, ethylbenzene, 
benzenepropyl-, decane and undecane were correlated 

with log biodegradation rate ( )klog  and a calibrated 

model developed. A quassi-steady state system was 
assumed (Aizpuru et al., 2002) by using constant 
biodegradability rates at different retention times. Using 
Equation 6 (LaGrega et al, 2001), model effluent 
concentrations were computed. 
 

kt

IO
CC −= ε        

         

Where IC = influent pollutant concentration in the biofilter 

and 
o

C = effluent pollutant concentration in the biofilter. 

Model mass loads and elimination capacity data was 
calculated using Equations 7 and 8 (Devinny et al, 1999) 
respectively. 
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Where L = mass load; EBRT  =empty bed retention 

time; EC  = elimination capacity; V = empty volume of 

bioreactor and Q = volumetric gas stream flow rate. The 

model was tested to predict removal efficiency, mass 
load and elimination capacity of m-,p-Xylene, o-Xylene, 
1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene, 
toluene, ethylbenzene, benzenepropyl-, decane and 
undecane using Equation 9 (Devinny et al, 1999). 
 

%100×






 −
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Where RE  is the removal efficiency in the biofilter. The 
removal efficiency and elimination capacity of m-,p-
Xylene, o-Xylene, 1,3,5-Trimethylbenzene, 1,2,4-
Trimethylbenzene, was evaluated using both 
experimental and model data sets. Model elimination 
capacity of toluene, ethylbenzene, benzenepropyl-, 
decane and undecane was tested. Linearity of predicted 
values at different retention times was established. 
GenStat  and  Excel  statistical  packages were used to  
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Table 2. Reaction and log-reaction rates of Xylene and 
Trimethylbenzene isomers. 
 

 
VOC 
 

 
k (hr-1) 
 

Log k 
 

m-,p-Xylene 3.60E-2* -1.444* 
o-Xylene 3.12E-2 -1.506 
1,3,5-Trimethylbenzene 2.05E-2 -1.688 
1,2,4-Trimethylbenzene 1.98E-2 -1.703 

 
 
 
analyze data. Statistical linear, general and multiple 
regression tests were performed to establish significant 
relationships among response and descriptor variables. 
Fischer and two-sided Student-T tests were performed at  
95% confidence interval to compare variances and 
means of experimental and predicted values of the model 
respectively. 
 
 
RESULTS AND DISCUSSION 
 
First order biodegradability reaction rate was established 
for m-,p-Xylene, o-Xylene, 1,3,5-Trimethylbenzene and 
1,2,4-Trimethylbenzene. Reaction rate constants are 
presented in Table 2.  
Co-linearity among the selected descriptor variables was 
observed but not reported here. Regression results 
showed very strong significance between biodegradability 
of xylene and trimethylbenzene isomers and their 
molecular weight (r

2 
= 0.995), log octanol-water partition 

coefficient (r
2 
=0.880), Ehomo (r

2 
= 0.989), Elumo (r

2 
= 1.000) 

and ∆E (r
2 

= 0.987). Significance of compound 
biodegradability with high energy (excited state) and 
ground state dipole moments was strong at (r

2 
= 0.678) 

and (r
2 

= 0.649) respectively. Log-H had weak 
significance of r

2 
= 0.461. The findings show that 

molecular orbital energy and dipole moments of atoms 
and molecules of VOCs are good correlative descriptors 
for their biodegradability rates in biofilters. 

Statistical sub-models (No.1-5) and best-fit complete 
QSAR-based biodegradability model (No.6) for xylene 
and trimethylbenzene isomers developed are presented 
in Table 3. The complete model was developed using 
molecular weight and log-octanol-water partition 
descriptor variables with a statistical accuracy of 99%. 
Other researchers (Yin and Dan-li, 2007; Okey and 
Stensel, 1996) developed complete two-variable 
biodegradability models after testing five and twelve 
descriptor variables respectively. 

The model showed very strong prediction of removal 
efficiencies, influent and effluent concentrations individual    
compounds    of     m - p-Xylene,    o - Xylene,  

(6) 

(7) 

(8) 

(9) 
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Table 3. Sub-models and best-fit model developed. 
 

Model No. 
 
 

Model )(log
1

10

^

∑
=

=

×+=
ni

i

n
Dk ββ

 

 

F 
 
 

P 
 
 

d.f 
 
 

1 0135.0071.0 −−
w

M  0.044 212.800 2 

2 272.0401.0 −−
ow

pK  7.340 0.225 2 

3 30.3088.2 hom +
o

E  4.080 0.293 2 

4 47.16510.5 −
lumo

E  22137.440 0.004 2 

5 18.16490.1 −∆E  73.230 0.074 2 

6 0517.00611.00119.0 −−−
oww

pKM
 96285.740 0.001 7 

 
 
 
 

 

 
 

 

 

 

 

 
 
Figure 1. Model removal efficiency, influent and effluent concentration of m-,p-Xylene 

 
 
1,3,5-Trimethylbenzene and 1,2,4-Trimethylbenzene as 
presented in Figure 1 and Figure 2. Model mass load and 
elimination capacity for m-,p-Xylene, o-Xylene, 1,3,5-
Trimethylbenzene and 1,2,4-Trimethylbenzene are 
presented in Figure 3. The significance of the model to 
predict elimination capacity of m-,p-Xylene, o-Xylene, 
1,3,5-Trimethylbenzene and 1,2,4-Trimethylbenzene was 
(r

2
 = 0.846) which strongly compared with that of r

2
 = 

0.892 using experimental data. Comparisons of 
experimental and model data for m-,p-Xylene, o-Xylene, 
1,3,5-Trimethylbenzene and 1,2,4-Trimethylbenzene are 
presented in Figure 4. Mass load data had strong 
agreement (r

2
 = 0.843) compared to elimination capacity 

data (r
2
 = 0.490). The later phenomenon could be 

attributed to abiotic losses including sorption and 
volatilization of xylene and trimethylbenzene isomers in 
the biofilter that was recorded as biodegradation. 

Model data, under null hypothesis of equal means and 
variances, were higher than those of observed data 
(Table 4). Large variances could be attributed to the use 
of m-,p-Xylene, o-Xylene, 1,3,5-Trimethylbenzene and 
1,2,4-Trimethylbenzene concentrations at zero time 
before treatment. Properties that were used to model 
elimination capacity of toluene, ethylbenzene, 
benzenepropyl-, decane and undecane are presented in 
Table 5 and the model statistical significance are 
presented in Table 6.  

Biodegradability profiles for toluene, ethylbenzene, 
benzenepropyl-, decane and undecane are presented in 
Figure 5. Removal of benzene-derivative VOCs was 
exponential while that of non-benzene VOCs was zigzag 
(Figure 5), indicative of near equal influent and effluent 
concentrations irrespective of retention times. The results 
revealed  that  reaction  rates  strongly  depended on  the  

A B 
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Figure 2. Model removal efficiency, influent and effluent concentrations of 1,3,5-Trimethylbenzene (Plate A) and 1,2,4-
Trimethylbenzene (Plate B) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 3. Model individual (Plate A) and overall (Plate B) elimination capacity (EC) profiles of Xylene and 
Trimethylbenzene (XTMB) isomers 

 
 
 

pollutant type, molecular weight and structure. Decane 
and undecane and their isomers are linear alkanes often 
used as internal standards in hydrocarbon degradation 
experiments as they are not eliminated easily in biofilters 
(Zagustina et al., 2010; Solano-Selena et al., 1999). The 
results revealed that degradation of aromatics was faster 
than for linear alkanes as demonstrated by other 

research findings (Ward et al., 2003; Solano-Selena et 
al., 1999). Both experimental and model data sets of m-
,p-Xylene, o-Xylene, 1,3,5-Trimethylbenzene, 1,2,4-
Trimethylbenzene and model data of toluene, 
ethylbenzene, benzenepropyl-, decane and undecane 
based on retention time produced linear correlations 
presented in Table 7. 

A B 

B A 
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Figure 4. Comparison of experimental and model mass loads (Plate A) and elimination capacity (Plate B) of Xylene and 
Trimethylbenzene (XTMB) isomers 

 
 
 

Table 4. Fisher and Student T-tests for experimental and model data of Xylene and 
Trimethylbenzene. 
 

Experimental Vs Model 
 

 
t 

 
p 

 
d.f(t) 

 
F 

 
d.f(F) 

Mass loads -5.03 0.001 21.03 1345.79 21 
Elimination capacity -7.89 0.001 21.04 1077.80 21 

 
 
 

Table 5. Properties of toluene, ethylbenzene, benzenepropyl-, decane and undecane 
used in model testing. 
 

VOC Ci
 

Mw
 

pKow
 

log k
 

k 

Toluene 6573.71 92.14
a
 2.73

b
 -1.313 4.86E-2 

Ethyl benzene 3309.59 106.17
a
 3.15

b
 -1.502 3.15E-2 

Benzenepropyl- 1618.19 120.19
a
 3.69

c
 -1.701 1.99E-2 

Decane 9014.82 142.28
a
 5.01

d
 -2.047 8.97E-3 

Undecane 8622.27 156.31
a
 5.74

a
 -2.259 5.51E-3 

 
 
 
Table 6. Linearity of elimination capacity for toluene, 
ethylbenzene, benzenepropyl-, decane and undecane model data. 

 
VOC r

2
 p F d.f(F) 

Toluene 0.944 0.001 340.03 21 
Ethylbenzene 0.873 0.001 139.28 21 
Benzenepropyl- 0.664 0.001 39.56 21 
Decane 0.531 0.001 22.67 21 
Undecane 0.361 0.060 3.98 21 

A B 
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Figure 5. Model elimination capacity profiles of toluene, ethylbenzene and benzenepropyl- (Plate A) and decane 
and undecane (Plate B) 

 
 
 

Table 7. Linearity of elimintion capacity for Xylene and Trimethylbenzene isomers, 
toluene, ethylbenzene, benzenepropyl-, decane and undecane data sets at different 
retention times. 
 

VOC 
Waste gas flow rate (L hr

-1
) 

11.50 14.50 18.00 23.80 

m-,p-Xylene 
 

0.653
o
 

0.836
p
 

0.759
o
 

0.999
p
 

0.840
o
 

1.000
p
 

0.987
o
 

1.000
p
 

o-Xylene 0.897
o
 

0.687
p
 

0.923
o
 

0.999
p
 

0.919
o
 

1.000
p
 

0.978
o
 

1.000
p
 

1,3,5-Trimethylbenzene 
 

0.993
o
 

0.275
p
 

0.982
o
 

0.998
p
 

0.432
o
 

0.999
p
 

0.954
o
 

0.999
p
 

1,2,4-Trimethylbenzene 
 

0.995
o
 

0.387
p
 

0.998
o
 

0.998
p
 

0.918
o
 

0.999
p
 

0.999
o
 

0.999
p
 

Toluene 
0.951 1.000 1.000 1.000 

Ethylbenzene 0.701 0.999 1.000 1.000 

Benzenepropyl- 0.372 0.998 .999 0.999 
Decane 0.975 0.895 0.997 0.998 
Undecane 0.993 0.985 0.729 0.987 

 
 
 
 

CONCLUSIONS 
 
A QSAR-based model with a statistical accuracy of 99% 
was developed to predict biodegradability of m-,p-Xylene, 
oXylene,1,3,5Trimethylbenzene,1,2,4Trimethylbenzene,t
oluene,ethylbenzene, benzenepropyl-, decane and 
undecane volatile organic compounds (VOCs) at different 
linear significance. The model strongly predicted the 

removal efficiency of individual compounds and revealed 
the characteristic behavior of linear alkane hydrocarbons 
in a biological treatment system in relation to other 
volatile organic compounds. The potential to model 
biodegradability of VOCs in waste gas streams is a key 
aspect in determining air pollution in the environment. In 
an industrial application where pollutant concentrations in 
waste gas emissions are not constant, the model would 

serve as a design tool for a biofiltration treatment system. 
Further research is recommended to include diverse 
compounds and structural descriptors to develop a 

predictive model. This would guide on the design of biofilters 
with known pollutant elimination trends and retention times 
of specific groups of compounds during treatment. 

A B 
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Values of Henry’s Law Constant at 25
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Computed quantum mechanical values. 


